

Mendeleev Commun., 2004, 14(6), 263-266

Mendeleev Communications

Host-guest chiral discrimination in incommensurate 2-hydroxyalkane/urea inclusion compounds: a computational study

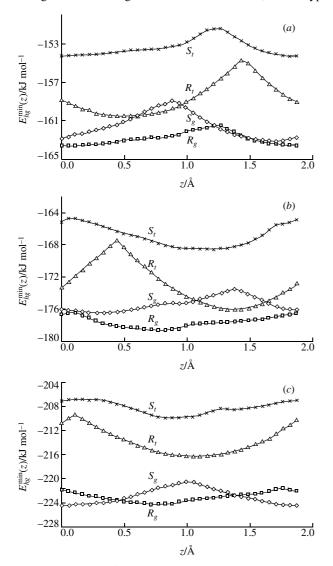
Lily Yeo^a and Kenneth D. M. Harris*^b

^a School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

^b School of Chemistry, Cardiff University, P.O. Box 912, Cardiff CF10 3TB, United Kingdom.

Fax: +44 2920 874 030; e-mail: HarrisKDM@cardiff.ac.uk

DOI: 10.1070/MC2004v014n06ABEH002028


Computational studies of the extent and nature of host-guest chiral discrimination in incommensurate 2-hydroxyalkane/urea inclusion compounds demonstrate a number of contrasting features between the 2-hydroxyalkane/urea inclusion compounds reported here and 2-bromoalkane/urea inclusion compounds reported previously.

There is currently much interest in understanding structural, dynamic and chemical properties of solid one-dimensional inclusion compounds, typified by urea inclusion compounds. ¹⁻³ In conventional urea inclusion compounds, the host structure^{4,5} comprises a hydrogen-bonded arrangement of urea molecules

that contains linear, parallel tunnels. The diameter of the urea tunnel varies between $ca.\,5.5$ and $5.8\,\text{Å}$ as a function of position along the tunnel, 6 and guest molecules based on a sufficiently long n-alkane chain and with a sufficiently small degree of substitution can form these inclusion compounds with

urea. This structure is stable only when the tunnels are filled with a dense packing of guest molecules. The space group of the host structure at ambient temperature is $P6_122$ or $P6_522$, with the tunnel constructed from a spiral arrangement of urea molecules. A given single crystal either has only right-handed spirals ($P6_122$) or only left-handed spirals ($P6_522$). The chirality of the tunnel structure is generated spontaneously during crystal growth. The potential to exploit the chiral nature of the urea tunnel structure clearly depends on the extent to which the interaction between a host tunnel of a given chirality (e.g., $P6_122$) differs for the two enantiomers (R and S) of a chiral guest. In spite of the potential for exploiting the chirality of urea inclusion compounds, virtually all reported studies of urea inclusion compounds have focused on non-chiral guest molecules, although an important exception is the experimental work of Schlenk^{7–11} (reviewed in ref. 12).

Conventional urea inclusion compounds have an incommensurate relationship¹³ between the periodicity (c_h) of the host structure along the tunnel and the periodicity (c_g) of the guest molecules along the tunnel. Thus, there are no sufficiently small integers p and q for which $pc_g = qc_h$. As a consequence, each guest molecule within a given tunnel has a different environment with respect to the host structure, and all values of z-coordinate within the unit cell of the host structure are sampled with essentially equal probabilities by different guest molecules within the tunnel (z defines the position along the tunnel). Investigations of host–guest chiral discrimination, of the type

Figure 1 Graphs of $E_{hg}^{\min}(z)$ versus z (in the range $0 \le z < c_h/6$) for the four different combinations of chirality and end-group conformation of 2-hydroxyalkane guest molecules in the $P6_122$ urea tunnel structure: (a) 2-OHC₉/urea, (b) 2-OHC₁₀/urea and (c) 2-OHC₁₃/urea.

presented in this paper, must therefore consider the host-guest interaction energy as a function of the position of the guest molecule along the host tunnel.

In this paper, we assess the extent and nature of host-guest chiral discrimination for chiral 2-hydroxyalkane guest molecules within the urea tunnel structure. For 2-hydroxyalkanes, the possibility that the guest molecules may participate in hydrogen-bonding interactions (both with urea molecules and with adjacent guest molecules) creates new opportunities for expressing chiral recognition that do not exist for 2-bromoalkane guest molecules, which we have studied previously 14 using a similar computational approach.

Our calculations of host-guest interaction in 2-hydroxyalkane/ urea inclusion compounds considered a single guest molecule in the P6₁22 urea tunnel structure.⁵ All 2-hydroxyalkane/urea inclusion compounds that have been prepared experimentally are known¹⁵ to have the conventional urea tunnel structure at ambient temperature. In our calculations of host-guest interaction, the host structure comprised 288 unit cells (6×6×8; with 8 unit cells along the tunnel axis) and the guest molecule was located in the central tunnel. Calculations were carried out for all members of the 2-hydroxyalkane series from 2-hydroxyoctane (denoted 2-OHC₈) to 2-hydroxypentadecane (denoted 2-OHC₁₅). Each guest molecule was constructed according to standard geometries, with the main alkane chain maintained in the all-trans conformation, as required to fit inside the tunnel. For each guest, both R and S enantiomers were considered, and for each enantiomer the following conformations of the OHcontaining end-group were considered: (i) OH trans/Me gauche (denoted by subscript t); (ii) OH gauche/Me trans (denoted by subscript g).

In our model, six variables define the position (x, y, z) and orientation (θ, ϕ, γ) of the guest molecule within the tunnel $[\gamma]$ represents rotation about the tunnel axis $(6_1 \text{ axis})]$, and one variable (μ) defines rotation of the H atom of the OH group about the C-OH bond. The host-guest interaction energy $E_{hg}(x, y, z, \theta, \phi, \gamma, \mu)$ was investigated as a function of the position (z) of the guest molecule along the host tunnel by considering specific (fixed) values of z on a grid of spacing $\Delta z = c_h/200 \approx 0.055$ Å. A standard potential energy parameterization (validated in previous studies of urea inclusion compounds 17) based on the atom-atom summation technique was used to compute $E_{hg}(x, y, z, \theta, \phi, \gamma, \mu)$. For each fixed value of z, the minimum value of $E_{hg}(x, y, z, \theta, \phi, \gamma, \mu)$ [denoted $E_{hg}^{\min}(z)$] was determined with respect to variation of x, y, θ , ϕ , γ and μ . For the $P6_122$ urea tunnel,

$$E_{hg}(x, y, z, \theta, \phi, \gamma, \mu) = E_{hg}(x, y, z + nc_h/6, \theta, \phi, \gamma + n\pi/3, \mu)$$

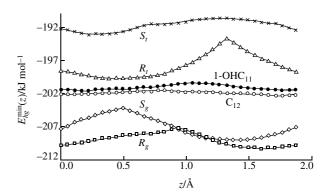
for any integer n, and so

$$E_{hg}^{\min}(z) = E_{hg}^{\min}(z + nc_h/6).$$

Thus, it is necessary to determine $E_{hg}^{\min}(z)$ only in the range $0 \le z < c_h/6$. The method employed to ensure that our calculations at each value of z locate the global minimum on the $E_{hg}(x, y, z, \theta, \phi, \gamma, \mu)$ surface, rather than a local minimum, has been described and tested rigorously elsewhere. ¹⁴ The average value (denoted $< E_{hg}^{\min}>$) of $E_{hg}^{\min}(z)$ is determined from

$$\langle E_{hg}^{\min} \rangle = \frac{6}{c_h} \int_{0}^{c_h/6} E_{hg}^{\min}(z) dz$$

and represents the average host–guest interaction energy for an incommensurate inclusion compound containing only the specified type of guest molecule. For each guest molecule considered, separate calculations were carried out for all four combinations of chirality and end-group conformation (i.e., R_p , S_p , R_p or S_p).


Graphs of $E_{hg}^{\min}(z)$ versus z ($0 \le z < c_h/6$) for selected 2-hydroxyalkane/urea inclusion compounds are shown in Figure 1. For the longer guest molecules (2-OHC₁₁ to 2-OHC₁₅), $E_{hg}^{\min}(z)$ is lower for R_g and S_g than for R_t and S_t at all values of z [Figure 1(c)]. For the shorter guest molecules (2-OHC₈ to 2-OHC₁₀), $E_{hg}^{\min}(z)$ is lower for R_g and S_g than for R_t and S_t at

most values of z, although there are some values of z for which the value of $E_{hg}^{\min}(z)$ for R_I drops below that for S_g [Figure 1(a)]. Thus, the graphs of $E_{hg}^{\min}(z)$ versus z show a clear overall preference for the OH gauche conformation of the guest molecules. The values of $< E_{hg}^{\min} >$ for each 'type' (i.e., R_I , S_I , R_g or S_g) of guest molecule are given in Table 1. For all guest molecules and for both enantiomers R and S, the value of $< E_{hg}^{\min} >$ is lower for the OH gauche conformation than the OH trans conformation, with the difference ranging from ca. -3 to ca. -21 kJ mol $^{-1}$. The energetic preference for the OH gauche conformation generally increases as the guest molecule becomes longer.

Unlike the case for 2-bromoalkane guests, 14 for which the gauche Br atom protrudes further (and hence less favourably) into the urea tunnel wall compared with the gauche Me group, for 2-hydroxyalkane guest molecules, the C-OH bond length and the OH van der Waals radius are comparable to the C-Me bond length and the Me van der Waals radius, respectively. Thus, the size and shape compatibility between the guest molecule and the urea host tunnel is substantially similar for the OH trans and OH gauche conformations of a 2-hydroxyalkane guest molecule, and steric factors are therefore unlikely to be a major determinant of the preference for the OH gauche conformation. Instead, the preference for the OH gauche conformation reflects the capability of the gauche OH group to form specific hydrogen-bonding interactions with the urea molecules in the host tunnel, at least at certain positions z of the guest molecule along the tunnel.

To assess the extent to which the host-guest interaction for 2-hydroxyalkanes is influenced by the gauche side-group, calculations were also carried out on dodecane (representing 2-OHC₁₂ in the OH gauche conformation with the OH group removed) and undecan-1-ol (representing 2-OHC₁₂ in the OH trans conformation with the gauche Me group removed). As shown in Figure 2, at all values of z, $E_{hg}^{min}(z)$ is more negative for dodecane and undecan-1-ol than for the OH trans conformation of 2-OHC₁₂ (both S_t and R_t), but more positive than for the OH gauche conformation of 2-OHC₁₂ (both R_{ρ} and S_{ρ}). These results demonstrate that the gauche OH group makes an overall negative contribution (ca. -2.4 to -7.1 kJ mol⁻¹ for S_o and ca. -5.6 to -8.2 kJ mol⁻¹ for R_g) to the host–guest interaction energy, implying that there is a favourable local interaction (hydrogenbonding) between the gauche OH group and the host tunnel. On the other hand, the fact that $E_{hg}^{\min}(z)$ is more positive for the OH trans conformation of 2-OHC₁₂ than for dodecane, undecan-1-ol and the OH gauche conformation of 2-OHC₁₂ suggests that the trans OH group is unable to form the same type of interaction and that the gauche Me group forms an unfavourable local interaction with the tunnel wall that makes an overall positive contribution to the host–guest interaction energy. The close similarity between the $E_{hg}^{\min}(z)$ versus z graphs for dodecane and undecan-1-ol suggests that the trans OH group does not form any specific interaction, such as hydrogen bonding, with the urea host tunnel.

Ab initio calculations¹⁸ with 3-21G* basis set (following local geometry optimization) for 2-hydroxyhexane [with the –(CH₂)₃Me chain in the all-*trans* conformation] suggest that, for the isolated molecule, the OH *gauche* conformation is lower

Figure 2 Graphs of $E_{hg}^{\min}(z)$ versus z (in the range $0 \le z < c_h/6$) for 2-OHC₁₂/urea (R_t , S_t , R_g and S_g guest molecules), undecan-1-ol/urea (denoted 1-OHC₁₁/urea) and dodecane/urea (denoted C₁₂/urea). All calculations refer to the $P6_122$ urea tunnel structure.

in energy than the OH *trans* conformation by *ca.* 5.65 kJ mol⁻¹. Thus, both the intramolecular potential energy of the guest (established from the *ab initio* calculations) and the host–guest interaction energy (established from the force-field calculations above) contribute to promote the OH *gauche* conformation, and an overall preference for this conformation of 2-hydroxyalkane guest molecules within the urea tunnel structure is clearly predicted.

We now consider the host–guest chiral discrimination, focusing on the two enantiomers $(R_{\varrho} \text{ and } S_{\varrho})$ of the preferred OH gauche conformation of the 2-hydroxyalkane guest molecules. gauche conformation of the 2-hydroxyalkane guest morecures. From graphs of $E_{hg}^{\min}(z)$ versus z, the 2-hydroxyalkanes can be classified broadly into three categories: (i) 2-OHC₉, 2-OHC₁₂ and 2-OHC₁₅: $E_{hg}^{\min}(z)$ is lower for R_g than S_g at most values of z, but is lower for S_g than R_g at some values of z [Figure 1(a)]; (ii) 2-OHC₁₀: $E_{hg}^{\min}(z)$ is lower for R_g than S_g at all values of z [Figure 1(b)]; and (iii) 2-OHC₈, 2-OHC₁₁, 2-OHC₁₃ and 2-OHC $E_{ng}^{\min}(z)$ is lower for R_g than E_g over about half the 2-OHC₁₄: $E_{hg}^{\min}(z)$ is lower for R_g than S_g over about half the region of z, and lower for S_g than R_g at the other values of z[Figure 1(c)]. Clearly, a higher degree of chiral discrimination is expected for guest molecules in classes (i) and (ii) than those in class (iii). These observations are reflected by the differences in $\langle E_{hg}^{\min} \rangle$ between R_g and S_g shown in Table 1. Thus, for all 2-hydroxyalkanes except 2-OHC₁₁, $\langle E_{hg}^{\min} \rangle$ is lower for R_g than S_g in the $P6_122$ tunnel structure, although the differences in $\langle E_{hg}^{min} \rangle$ are comparatively small (less than *ca.* 2.3 kJ mol⁻¹). For 2-OHC₁₁, $\langle E_{hg}^{\min} \rangle$ is lower (by 0.2 kJ mol⁻¹) for S_g than R_g . For all 2-hydroxyalkanes studied, the differences in $\langle E_{ho}^{\min} \rangle$ between the R_g and S_g enantiomers are substantially smaller than those found previously¹⁴ for 2-bromoalkane/urea inclusion compounds, for which the difference in $\langle E_{hg}^{\min} \rangle$ between the R and S enantiomers in the preferred conformation ranges from 2.8 to 8.1 kJ mol⁻¹.

As suggested above, the host–guest interaction for 2-hydroxy-alkane guest molecules depends significantly on the ability to establish hydrogen-bonding interactions with urea molecules in the host tunnel. The fact that, in the OH gauche conformation, both the R and S enantiomers are able to form hydrogen bonding interactions with the urea host tunnel (albeit with dif-

Table 1 Values of $\langle E_{hg}^{\min} \rangle$ for the four different combinations (denoted R_r , S_r , R_g or S_g) of chirality and end-group conformation of 2-hydroxyalkane guest molecules in the $P6_122$ urea tunnel structure. The differences between the values of $\langle E_{hg}^{\min} \rangle$ for the two conformations of a given enantiomer and the difference between the values of $\langle E_{hg}^{\min} \rangle$ for the two enantiomers in the same conformation are also shown.

Guest molecule	$\langle E_{hg}^{\min} \rangle / \text{kJ mol}^{-1}$				Differences in $\langle E_{hg}^{min} \rangle / kJ \text{ mol}^{-1}$			
	S_g	R_g	S_t	R_t	$S_g - S_t$	$R_g - R_t$	$R_g - S_g$	$R_t - S_t$
2-OCH ₈	-144.9	-145.0	-138.2	-141.5	-6.7	-3.5	-0.1	-3.3
2-OCH _o	-161.5	-162.9	-153.4	-158.6	-8.1	-4.3	-1.4	-5.2
2-OCH ₁₀	-175.4	-177.7	-166.9	-172.9	-8.5	-4.8	-2.3	-6.0
2-OCH ₁₁	-193.3	-193.1	-183.1	-186.8	-10.2	-6.3	+0.2	-3.7
2-OCH ₁₂	-207.1	-209.0	-191.7	-197.8	-15.4	-11.2	-1.9	-6.1
2-OCH ₁₃	-222.9	-223.1	-208.3	-213.8	-14.6	-9.3	-0.2	-5.5
2-OCH ₁₄	-239.0	-239.6	-218.6	-222.8	-20.4	-16.8	-0.6	-4.2
2-OCH ₁₅	-253.4	-255.2	-234.6	-239.2	-18.8	-16.0	-1.8	-4.6

ferent optimum positions and orientations with respect to the tunnel) underlies our finding that there is no substantial energetic discrimination between the *R* and *S* enantiomers in 2-hydroxy-alkane/urea inclusion compounds.

While the investigations reported here have focused on the crucial interaction (*i.e.*, host–guest interaction) responsible for chiral recognition in these solids, we note that other factors may also influence the exact proportions of the two enantiomers of a chiral guest molecule within the host tunnel. These factors include the guest–guest interaction, which may be expected to exert some influence when the orientations of adjacent guest molecules are such that their chiral head-groups come together, and structural relaxation of the host framework (recalling that the calculations presented here were within the approximation of a rigid host structure). Future computational studies of host–guest chiral recognition in urea inclusion compounds will include consideration of these additional aspects.

This study was supported by the University of Birmingham, Cardiff University and Ciba Specialty Chemicals.

References

- 1 M. D. Hollingsworth and K. D. M. Harris, in *Comprehensive Supra-molecular Chemistry*, eds. D. D. MacNicol, F. Toda and R. Bishop, Pergamon, New York, 1996, vol. 6, p. 177.
- 2 F. Guillaume, J. Chim. Phys. (Paris), 1999, 96, 1295.

- 3 K. D. M. Harris, Encyclopedia of Supramolecular Chemistry, eds. J. L. Atwood and J. W. Steed, Marcel Dekker, New York, 2004, vol. 2, np. 1538–1549
- 4 A. E. Smith, Acta Crystallogr., 1952, **5**, 224.
- 5 K. D. M. Harris and J. M. Thomas, J. Chem. Soc., Faraday Trans., 1990, 86, 2985.
- 6 A. R. George and K. D. M. Harris, J. Mol. Graphics, 1995, 13, 138.
 - 7 W. Schlenk, Experientia, 1952, 8, 337.
 - 8 W. Schlenk, Liebigs Ann. Chem., 1973, 7, 1145.
 - 9 W. Schlenk, Liebigs Ann. Chem., 1973, 7, 1156.
 - 10 W. Schlenk, Liebigs Ann. Chem., 1973, 7, 1179.
 - 11 W. Schlenk, Liebigs Ann. Chem., 1973, 7, 1195.
- 12 R. Arad-Yellin, B. S. Green, M. Knossow and G. Tsoucaris, in *Inclusion Compounds*, eds. J. L. Atwood, J. E. D. Davies and D. D. MacNicol, Academic Press, New York, 1984, vol. 3, p. 263.
- 13 A. J. O. Rennie and K. D. M. Harris, *Proc. Royal Soc. A*, 1990, 430, 615.
- 14 L. Yeo and K. D. M. Harris, J. Chem. Soc., Faraday Trans., 1998, 94, 1633.
- 15 L. Yeo and K. D. M. Harris, unpublished results.
 - 16 BIOSYM Technologies Inc., 9685 Scranton Rd., San Diego, California, U.S.A.
- 17 A. R. George and K. D. M. Harris, J. Mat. Chem., 1994, 4, 1731.
 - 18 R. L. Johnston and K. D. M. Harris, unpublished results.

Received: 13th September 2004; Com. 04/2353